Search results

Search for "magnetite nanoparticles" in Full Text gives 32 result(s) in Beilstein Journal of Nanotechnology.

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • ]. The crystal structure of Fe3O4 nanoparticles can be tailored to allow for precise control, and these nanostructures find utility in various production processes. Magnetite nanoparticles exhibit superparamagnetic behavior due to the negligible energy barrier in the hysteresis of the particles
PDF
Album
Full Research Paper
Published 28 Feb 2024

Ferromagnetic resonance spectra of linear magnetosome chains

  • Elizaveta M. Gubanova and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2024, 15, 157–167, doi:10.3762/bjnano.15.15

Graphical Abstract
  • that of random clusters of interacting spherical magnetite nanoparticles. The shape of FMR spectra of both assemblies is shown to differ appreciably even at sufficiently large values of filling density of random clusters. Keywords: chains of magnetosomes; ferromagnetic resonance spectra; magnetite
  • nanoparticles; numerical simulation; Introduction Magnetotactic bacteria are living organisms that grow within themselves magnetite nanoparticles called magnetosomes [1][2][3][4]. In contrast to chemically synthesized magnetite nanoparticles [5][6], magnetosomes have a perfect crystal structure, a narrow size
  • distribution, and a high saturation magnetization close to that of bulk magnetite. In particular, magnetotactic bacteria M. gryphiswaldense produce linear chains of quasi-spherical magnetite nanoparticles with sizes ranging from 30 to 50 nm [1][2][7][8][9]. However, there are also magnetotactic bacteria that
PDF
Album
Full Research Paper
Published 05 Feb 2024

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • , studying the morphology and phase composition of iron-oxide-based nanoparticles is a critical issue. Nevertheless, magnetite and maghemite particles remain the most commonly used nanoparticles in biomedical applications. However, it must be noted that magnetite nanoparticles undergo rapid oxidation in air
  • nanoparticles [19][20]. To synthesize magnetite nanoparticles, an additional component (e.g., 1,2-hexadecandiol) was introduced into the system [21]. According to the most common method, a dispersion of magnetite nanoparticles is obtained via thermolysis of commercial or separately synthesized Fe(III) oleate at
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • developed in order to increase the reliability of the correlations between morphology and magnetism. Using the Magn3t software, the magnetic shape anisotropy magnitude and direction of magnetite nanoparticles has been extracted for the first time directly from transmission electron tomography. Keywords
  • specimen obtained at angles θ, θ − dθ and θ + dθ are averaged pixel-wise. The process can be repeated more than once if necessary, keeping in mind the decrease in the resolution. In Figure 1, an example of three successive images from a tomographic image series (of magnetite nanoparticles) before and after
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • .12.104 Abstract Low-frequency hysteresis loops and specific absorption rate (SAR) of various assemblies of elongated spheroidal magnetite nanoparticles have been calculated for a range of particle semiaxis ratios a/b = 1.0–3.0. The SAR of a dilute randomly oriented assembly of magnetite nanoparticles in
  • -dipole interaction on the SAR of a dilute assembly of oriented clusters of elongated magnetite nanoparticles has also been investigated depending on the volume fraction of nanoparticles in a cluster. It has been found that the SAR of the assembly of oriented clusters decreases by approximately an order
  • more complex. Namely, it is found that the SAR of a dilute randomly oriented assembly of magnetite nanoparticles in an ac magnetic field of moderate frequency, f = 300 kHz, and amplitude, H0 = 100–200 Oe, significantly decreases with an increase in the particle aspect ratio. In addition, there is a
PDF
Album
Full Research Paper
Published 28 Dec 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • ], tungsten [83][84][85], an Fe–Zr alloy [86], a Y2O3/Fe bilayer [87], and nanocluster films of magnetite and core–shell iron–magnetite nanoparticles [88]. In these studies, various implantation effects have been investigated, including the tendency for grain boundaries and interfaces to act as sinks for
PDF
Album
Review
Published 02 Jul 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • -buffered saline (PBS). Basic physicochemical properties of surface-modified magnetite nanoparticles. Inhibitors of endocytosis and cytoskeleton dynamics. Supporting Information Supporting Information File 52: Expression of clathrin and caveolin, cytotoxicity of MNPs and endocytic inhibitors, time-lap
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • properties is the pH during synthesis. This is due to the fact that the OH− ion concentration in the reaction mixture controls the reaction rate and, therefore, the nanocrystal growth mechanism. For instance, Ahn et al. [31] studied the formation of magnetite nanoparticles by performing co-precipitation
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • oleic acid coating method used on pristine nanoparticles [14]. Homogeneous, polymer-coated spherical magnetite nanoparticles with superparamagnetic properties have been successfully synthesised. The polymer coating provides extra stability to the magnetic nanoparticles in aqueous media [15]. To increase
  • , we considered the case in which a colloid is electrostatically stabilised. The system is composed of water-dispersed spherical magnetite nanoparticles whose sizes follow a lognormal distribution. The Hamaker constant for magnetite in water is given as a reference value [20]. The system parameter
PDF
Album
Full Research Paper
Published 12 Aug 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • irradiated gold nanocrosses attached to the bacteria was effective in eliminating and preventing bacterial regrowth. By combining the magnetic and optical properties of Fe3O4 and gold nanoparticles, respectively, multifunctional nanohybrids based on Fe3O4@Au (i.e., magnetite nanoparticles decorated with gold
PDF
Album
Review
Published 31 Jul 2020

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  • Camila A. Proença,
  • Tayane A. Freitas,
  • Thaísa A. Baldo,
  • Elsa M. Materón,
  • Flávio M. Shimizu,
  • Gabriella R. Ferreira,
  • Frederico L. F. Soares,
  • Ronaldo C. Faria and
  • Osvaldo N. Oliveira Jr.

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Graphical Abstract
  • -linked immunosorbent assay. The approaches for immunoassays and data processing are generic, and therefore the strategies described here may provide a simple platform for clinical diagnosis of cancers and other types of diseases. Keywords: cancer biomarkers; magnetite nanoparticles; microfluidic devices
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • , tend to occupy both the B-sites and the smaller A-sites (see Figure 6). This mixed occupancy in cobalt-substituted magnetite nanoparticles has been confirmed by Mössbauer spectroscopy [30]. Therefore, it is expected that when cobalt ions substitute iron ions at the A-sites, an increasing Me–O bond
PDF
Album
Full Research Paper
Published 03 Jul 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • -free nanoparticles, the Brownian relaxation mechanism becomes dominant over the Néel mechanism only for nanoparticles larger than a critical radius (e.g., 8 nm in the case of magnetite nanoparticles) [21]. In such conditions, the heat transfer mechanism might also be completed by a hysteretic loss (the
  • concentrated ferrofluid (φ = 0.094) consisting of quasi-ellipsoidal magnetite nanoparticles of average magnetic volume of 4.3 × 10−25 m3 dispersed in transformer oil, with a spontaneous magnetization Ms = 4.5 × 105 A m−2, as determined by DC low temperature magnetometry and an effective anisotropy energy
  • nanoparticles) is not conclusive. In order to avoid the effect of the dilution, the SAR values expressed in W/g of magnetic material can be used. Based on the definition of the volume fraction and taking a density of roughly 5.6 g/cm3 for magnetite nanoparticles and 0.9 g/cm3 for the transformer oil, one can
PDF
Album
Full Research Paper
Published 24 Jun 2019

Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy

  • Julian J. Brunner,
  • Marina Krumova,
  • Helmut Cölfen and
  • Elena V. Sturm (née Rosseeva)

Beilstein J. Nanotechnol. 2019, 10, 894–900, doi:10.3762/bjnano.10.90

Graphical Abstract
  • approaches, whereby the self-assembly by evaporation of the solvent of a nanoparticle dispersion is the most prominent one [13][19]. Magnetite nanoparticles can be self-assembled to mesocrystals (i.e., long-range translational and preferable orientational order of nano-sized building blocks) [13][14][20
  • -to-face alignment (i.e., interaction of the particle {110} faces with other particle faces within the layer) and on the other side magnetic anisotropy of magnetite nanoparticles induces the alignment of the <111>magnetite easy axis parallel to the direction of the external magnetic field
  • magnetite nanocrystals: [001]SL || [310]magnetite, [001]SL || [301]magnetite, [001]SL || [100]magnetite (the presence of [114]magnetite orientation cannot be excluded since most reflections are overlapped with [310]magnetite and [301]magnetite). Thus, it was highlighted that the morphology of the magnetite
PDF
Album
Letter
Published 17 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • magnetite nanoparticles into γ-maghemite (mag) nanoparticles. The cerium ion attaches to the nanoparticle, producing surface defects (an Fe–O–[CeLn] bond is formed). The cerium-doped maghemite nanoparticles are more stable than the non-doped ones, which tend to aggregate. In addition to the stabilization
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Heating ability of magnetic nanoparticles with cubic and combined anisotropy

  • Nikolai A. Usov,
  • Mikhail S. Nesmeyanov,
  • Elizaveta M. Gubanova and
  • Natalia B. Epshtein

Beilstein J. Nanotechnol. 2019, 10, 305–314, doi:10.3762/bjnano.10.29

Graphical Abstract
  • , Moscow, Russia National Research Nuclear University “MEPhI”, 115409, Moscow, Russia 10.3762/bjnano.10.29 Abstract The low frequency hysteresis loops and specific absorption rate (SAR) of assemblies of magnetite nanoparticles with cubic anisotropy are calculated in the diameter range of D = 20–60 nm
  • taking into account both thermal fluctuations of the particle magnetic moments and strong magneto–dipole interaction in assemblies of fractal-like clusters of nanoparticles. Similar calculations are also performed for assemblies of slightly elongated magnetite nanoparticles having combined magnetic
  • . However, the ability of magnetic nanoparticle assemblies to generate heat can be improved if the nanoparticles are covered by nonmagnetic shells of appreciable thickness. Keywords: fractal clusters; magnetite nanoparticles; magneto–dipole interaction; numerical simulation; specific absorption rate
PDF
Album
Full Research Paper
Published 29 Jan 2019

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • hyperthermia; magnetic resonance imaging; nanomagnetism; theranostics; Introduction Biocompatible magnetite nanoparticles (NPs) are anticipated to provide new noninvasive therapies and early diagnostics for previously incurable diseases using a single, so-called “theranostics” platform [1][2][3]. The magnetic
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Enzymatically promoted release of organic molecules linked to magnetic nanoparticles

  • Chiara Lambruschini,
  • Silvia Villa,
  • Luca Banfi,
  • Fabio Canepa,
  • Fabio Morana,
  • Annalisa Relini,
  • Paola Riani,
  • Renata Riva and
  • Fulvio Silvetti

Beilstein J. Nanotechnol. 2018, 9, 986–999, doi:10.3762/bjnano.9.92

Graphical Abstract
  • decided not to bind a real drug, but simply a fluorescent molecule, in order to facilitate analysis of enzymatic cleavage and obtain the first proof of concept of the enzymatic release of a small organic molecule bound to a magnetic nanoparticle. Results and Discussion Magnetite nanoparticles were
  • : 672.4128. Synthesis of APTES-functionalized magnetite nanoparticles (NP@APTES) [34]: FeCl2·4H2O (2.5 mmol) and FeCl3·6H2O (5 mmol) were dissolved in Milli-Q water at pH 2 under N2 atmosphere and vigorous mechanical stirring. Once the solution reached 75 °C, a proper amount of NaOH aqueous solution (2 M
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2018

Heavy-metal detectors based on modified ferrite nanoparticles

  • Urszula Klekotka,
  • Ewelina Wińska,
  • Elżbieta Zambrzycka-Szelewa,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2018, 9, 762–770, doi:10.3762/bjnano.9.69

Graphical Abstract
  • ] and also magnetic nanoparticles [13][14] usually doped with other elements (e.g., Ca, Mn) [15][16] have been tested for this purpose. Therefore, detailed studies on adsorption efficiency on doped magnetite nanoparticles are very interesting and innovative in order to understand the importance of core
  • composition and surface modification. The aim of the study is to examine the efficiency of adsorption of heavy metals in artificial solutions on doped magnetite nanoparticles (Ca, Co, Mn, Ni) surface-modified with PA, SA, AA, 3-PPA or 16-PHDA linkers. Experimental Reagents and solutions Chemicals used in this
  • synthesis of iron(II) and iron(III) chlorides was used [17][18][19]. As a reference, pure magnetite nanoparticles were also synthesized by the method described below. In the first step of the synthesis, into each of two three-necked flasks, 0.5% NH3 solution was placed and deoxygenated with argon for 20 min
PDF
Album
Full Research Paper
Published 28 Feb 2018

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

  • Błażej Scheibe,
  • Radosław Mrówczyński,
  • Natalia Michalak,
  • Karol Załęski,
  • Michał Matczak,
  • Mateusz Kempiński,
  • Zuzanna Pietralik,
  • Mikołaj Lewandowski,
  • Stefan Jurga and
  • Feliks Stobiecki

Beilstein J. Nanotechnol. 2018, 9, 591–601, doi:10.3762/bjnano.9.55

Graphical Abstract
  • magnetite nanoparticles were prepared and the physicochemical properties of this hybrid system were studied. The investigations were focused on the influence of the involved constituents and their cross-interactions on the properties of the composite. It was found that coating the magnetite particles with
  • of MNPs in rGO-Fe3O4 and rGO-PDA@Fe3O4 samples (Figure 2c,d). The analyzed pore sizes are in the range of 1.5 μm to 3.5 μm. The diameter distribution of magnetite nanoparticles was homogenous in all samples (9 nm to 18 nm). From Figure 2d one can observe that regardless of PDA coating, the Fe3O4
  • presented in Figure 4. The analysis of changes in ID/IG ratio (Figure 4a) shows two effects: (i) regardless of the sample, the ID/IG ratio decreases with the increase of applied excitation energy and (ii) the ID/IG ratio decreases after the addition of magnetite nanoparticles. Therefore, in comparison to
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2018

Characterization of ferrite nanoparticles for preparation of biocomposites

  • Urszula Klekotka,
  • Magdalena Rogowska,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2017, 8, 1257–1265, doi:10.3762/bjnano.8.127

Graphical Abstract
  • for each ferrite core and surface modification. The IR spectra presented in Figures 5–7 show changes on the nanoparticle surface after every modification step. The spectra of the magnetite nanoparticles (Figure 5) show bands at 592 cm−1 which originate from the Fe–O bond typical for magnetite [28][29
PDF
Album
Full Research Paper
Published 13 Jun 2017

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • , Figure S5b) were assigned to magnetite (JCPDS 190629). Thus, the possibility to obtain magnetite nanoparticles from a mixed-valence iron acetate cluster has been demonstrated. In this procedure, small monodisperse nanoparticles were separated from polydisperse ones by a simple filtration. Preparation
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Nanoanalytics for materials science

  • Thilo Glatzel and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1674–1675, doi:10.3762/bjnano.7.159

Graphical Abstract
  • applied to investigate magnetite nanoparticles by Kalska-Szostka et al. [4]. TEM was also used in the work of Gutsch et al. who developed a novel energy-filtered transmission electron microscopy (EFTEM) approach using ultrathin TEM membranes [5]. With this method, they were able to accurately study the
PDF
Editorial
Published 10 Nov 2016

Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases

  • Oihane K. Arriortua,
  • Eneko Garaio,
  • Borja Herrero de la Parte,
  • Maite Insausti,
  • Luis Lezama,
  • Fernando Plazaola,
  • Jose Angel García,
  • Jesús M. Aizpurua,
  • Maialen Sagartzazu,
  • Mireia Irazola,
  • Nestor Etxebarria,
  • Ignacio García-Alonso,
  • Alberto Saiz-López and
  • José Javier Echevarria-Uraga

Beilstein J. Nanotechnol. 2016, 7, 1532–1542, doi:10.3762/bjnano.7.147

Graphical Abstract
  • alternating magnetic field in order to achieve hyperthermia. The evolution of an in vivo model has been described, resulting in a significant reduction in tumor viability. Keywords: magnetite nanoparticles; magnetic hyperthermia; RGD functionalization; tumor targeting; Introduction Colorectal liver
  • an improvement in the selectivity of the reaction [31]. In this paper, a successive addition synthesis by a thermal decomposition method has been employed to obtain oleic acid and oleylamine-capped magnetite nanoparticles with defined sizes [32][33][34]. Nevertheless, these high quality, organic
  • efficacy of other therapeutic approaches [36]. Results and Discussion The method of thermal decomposition by successive additions allowed the synthesis of magnetite nanoparticles surrounded by oleic acid (Fe3O4@OA), which have been transferred to water by an amphiphilic ligand, becoming hydrosoluble
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2016

Simultaneous cancer control and diagnosis with magnetic nanohybrid materials

  • Reza Saadat and
  • Franz Renz

Beilstein J. Nanotechnol. 2016, 7, 121–125, doi:10.3762/bjnano.7.14

Graphical Abstract
  • Reza Saadat Franz Renz Institute for Inorganic Chemistry, Leibniz University Hannover, Callinstr. 3–9, 30169 Hannover, Germany 10.3762/bjnano.7.14 Abstract Coated magnetite nanoparticles were linked to 68Ga complexes used in the positron emission tomography (PET) for a new technical approach to
  • of the particles in the tissue. With this novel method of combining detection and treatment simultaneously, the amount of medical exposure could be minimized for the patient. The results demonstrate that magnetite nanoparticles can effectively be functionalized with PET isotopes and pH sensitive
  • complexes in order to use them as a new type of radiopharmaceuticals. Keywords: biocompatible nanoparticles; cancer control; cancer diagnosis; magnetite nanoparticles; positron emission tomography; Introduction In the field of diagnostic investigation of metabolic diseases imaging methods based on
PDF
Album
Supp Info
Letter
Published 27 Jan 2016
Other Beilstein-Institut Open Science Activities